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Abstract In temperate ecosystems, fire management

involving prescribed burning and wildfire suppression

often causes a shift in fire season from hot and dry

summer conditions to cooler, moister conditions in

spring or autumn. The effects of this change on seed

dispersal by wind after fire are unknown. However,

calmer wind conditions and increased standing veg-

etation after fires in cooler seasons may reduce seed

dispersal following fire. We studied seed dispersal in

different seasons for a serotinous obligate-seeder,

Callitris verrucosa, growing in a semi-arid environ-

ment in South Australia. We measured primary (wind-

borne) and secondary (on-ground) seed dispersal

during spring, summer and autumn, using empirical

observations and modelling based on detailed mea-

surement of wind characteristics. At comparable

horizontal wind speeds, primary dispersal was greater

in summer compared to spring and autumn. Secondary

dispersal was similarly short in all three seasons when

vegetation cover was high, but when cover was low,

seeds travelled much further in summer than in the

other two seasons. A shift in the seasonal timing of

seed release can decrease dispersal distances of

serotinous obligate seeders, which is likely to reduce

gene flow and the ability to colonise new sites. This

can lead to changes in population and community

structures which may further affect fire patterns. These

findings could be applicable to other serotinous

obligate seeding plant species found in other families

such as Proteaceae, Myrtaceae, Pinaceae and

Cupressaceae.Deceased: C. Michael Bull.
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Introduction

Understanding how anthropogenic changes to fire

regimes affect species’ persistence is central to

maintaining biodiversity in fire-prone ecosystems

(Johnson and Miyanishi 1995; Keith et al. 2002; Allen

2008; Bennett et al. 2010; Penman et al. 2011). Some

effects of changed fire regimes on plants, such as

recovery from disturbance and seedling establishment,

are relatively well understood (Knox and Clarke 2006;

Sheuyange et al. 2005; Bradstock et al. 1996; Howe

1994). In contrast, understanding the impacts of

changed fire regimes on dispersal of plant propagules

remains poor yet the influence that changes in fire

regimes have on the dispersal of propagules may be

strong (Banks et al. 2013).

One component of how humans influence fire

regimes is through modification of ignition patterns

(Bradstock 2010; Bowman et al. 2009, 2012; Pyne

2010). In temperate ecosystems around the world,

most wildfires occur during the drier and hotter

summer months. These fires achieve high tempera-

tures and often burn large areas (Pausas 2004; Pausas

et al. 2009; Meyn et al. 2007; Keeley and Zedler

2009). However, most managed burning is carried out

during cooler and wetter times of the year when fires

are easier to control (Slijepcevic et al. 2007; Van

Wilgen et al. 2010). As a result, these fires generally

burn with lower intensity (Gill et al. 2001; VanWilgen

et al. 2010).

Some impacts of changes in fire season on plants

have been previously studied, most notably: The

temperatures generated by fire that are required to

stimulate the release of seeds from their woody fruits

(Lamont et al. 1993; Nathan et al. 1999; Knox and

Clarke 2006), the success of seedling recruitment

linked to the weather conditions in the post-fire

environment (Enright and Lamont 1989; Hodgkinson

1991; Bond and van Wilgen 1996; Thomas et al.

2010), and more recently through seasonal effects on

seed dormancy (Mackenzie et al. 2016). In contrast,

the effect of changed fire season on seed dispersal has

not been explored. Seed dispersal contributes to gene

flow between existing populations and to demographic

rescue and recolonisation, and consequently influ-

ences the persistence of plant populations over time

(Nathan and Muller-Landau 2000; Keith 2012).

For serotinous plant species (species that release

seeds in response to an environmental trigger such as

fire) with wind-dispersed seeds, post-fire seed disper-

sal depends on the prevailing wind conditions after a

fire, which could vary among seasons for two reasons.

First, local turbulences can be caused by solar heating

of the ground surface; hence, it is likely that the wind

after fire will be less turbulent on cooler days in spring

and autumn than during hotter days in summer

(Sullivan et al. 2012; Kuparinen et al. 2009). Updrafts

associated with turbulence may be more important for

causing long-distance seed dispersal than horizontal

wind speed (Tackenberg et al. 2003a, b; Tackenberg

2003). A study in boreal forests showed that there was

a positive correlation between air temperature and

wind-driven dispersal distances (Kuparinen et al.

2009). Thus, for serotinous species with wind-driven

dispersal, cooler season burns may cause seeds to

travel shorter distances. Second, less-intense fires

usually leave more intact and taller vegetation that will

act as a wind break, reducing wind speed, and

obstructing seed movement (Schurr et al. 2005; Soons

et al. 2004). Together these factors might reduce

dispersal of seeds that are released by cool season

management fires, relative to those released by natural

summer wild-fires.

In this study, we asked whether the season of seed-

releasing fires could affect seed-dispersal distances in

Callitris verrucosa, a serotinous gymnosperm. In this

species, adult plants are killed by high intensity fires,

and population persistence relies on dispersal of seeds

released from their serotinous fruits into the post-fire

environment (Bradstock et al. 2006). To determine

whether seed dispersal of C. verrucosa is affected by

fire season, we measured primary seed dispersal in the

wind conditions experienced during spring, summer

and autumn, using both empirical observations and

modelling. In addition, we assessed the effect of

vegetation cover on the secondary dispersal of seeds

along the ground.

The findings of this study help to provide guidance

on appropriate seasonal timing for burning practices to

sustain gene flow amongst populations and colonisa-

tion potential of wind-dispersed serotinous obligate

seeding plant species.
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Material and methods

Study region

The study was conducted in Hincks Wilderness

Protection Area (33�450S, 136�030E) a 67,000 ha

reserve on the Eyre Peninsula, South Australia. The

region is semi-arid, with an average annual rainfall of

340 mm. The main topographic features are white

sand dunes interspersed by hard, reddish-brown

swales. The dominant vegetation type in the reserve

is mallee with hummock grass and mallee heath and

shrublands (‘‘NatureMaps’’ 2017), characterised by

multi-stemmed eucalypts. Common trees are Euca-

lyptus costata, E. socialis and Callitris verrucosa.

Common understory species include the shrub Me-

laleuca uncinata (Smith 2012), and the hummock

grass Triodia irritans (Driscoll and Henderson 2008).

Study of species, Callitris verrucosa

Callitris verrucosa (A.Cunn. Ex Endl.) F.Muell., the

native mallee-pine, from the family Cupressaceae, is a

canopy dominant of mallee vegetation and a seroti-

nous obligate seeder (Bond and van Wilgen 1996;

Bradstock and Cohn 2002). It grows as a small stunted

tree often with several trunks, usually up to 3 m, and

rarely up to 6 m high. Cones occur solitarily or

clustered on short lateral branches and increase in

number with tree age (Bradstock and Cohn 2002).

An individual cone can contain up to 30 seeds

(Bonney and Miles 1994; pers. obs.). Each seed has

two wings which generally make up more than 70% of

the total width with the actual seed located in the

middle (Bradstock and Cohn 2002). Diaspore width

which includes seed and wings, ranges from 2 to

6 mm, and weigh between 2 and 30 mg. (Bradstock

and Cohn 2002; pers. obs.). Trees produce their first

fruits at an age of 10–15 years and can live for

250 years (Bradstock and Cohn 2002; Zimmer et al.

2011).

Canopy seed banks of C. verrucosa are usually

exhausted following a crown fire (Pausas et al. 2004;

Lamont et al. 1991). We have also observed sponta-

neous release of seed without fire, both when branches

bearing cones have died and also when they remain

alive. Other studies also assume that a small number of

seeds can be released independently of fire events

(Bradstock et al. 2006; Bonney and Miles 1994).

Fire usually initiates the release of seeds, as cones

open after exposure to high temperatures. Seed release

and dispersal are promoted when there are strong

turbulent winds and little or no rain (pers. obs.).

Callitris verrucosa relies on dispersal of seeds from

its canopy seed banks as this species does not develop

appreciable soil seed banks due to lack of seed

dormancy. The germination of seeds on the soil

surface can increase through the exposure of seeds to

variable weather conditions, such as high temperatures

and low water potential over an extended period of

time (Adams 1999).

In Hincks Wilderness Protection Area, C. verru-

cosa occurs in clusters of various sized individuals as

well as scattered and isolated individual trees. In the

older burns, C. verrucosa was found to be a canopy-

dominant species. Within the reserve, C. verrucosa

only grows in areas with white sandy soils often

associated with elevated dune topography (Harden

1990; Zimmer et al. 2011; pers. obs.).

Empirical observations of seed dispersal

In 2011–2012, we measured seed dispersal using

daylight visual tracking during three different seasons;

spring, summer and autumn. We conducted seed

experiments at three sites in each of two burns about

6 km apart that had both recently undergone a planned

burn, one in spring 2009 and the other in autumn 2011.

Within those two burns, the three release sites were

positioned 800 m apart from each other along a

transect that was placed parallel to and 100 m from the

burn edge within the burn.

Seed release experiments were conducted in Octo-

ber (spring) 2011, January/February (summer) 2012

and April (autumn) 2012. Although the release

locations varied in post-fire age from 0.5 to 2.5 years

during the experiment, regrowth of vegetation was

limited in all sites over the duration of the experiment.

We tested the effects of post-fire age by including it as

a factor in the analysis.

Seeds were collected from other populations of C.

verrucosa within the reserve. At each release site and

in each season, 20 randomly chosen seeds were

released from each of three different heights (1 m,

2 m and 3 m) giving a total of 360 seeds released per

season. The seeds were given a dot of fluorescent

coloured dye to make relocation easier. We tested one

hundred of the seeds with dye (8.3 ± 4.3 mg;
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3.0 ± 0.05 m/s) and found no significant difference in

the falling time (t198 = 0.943; P = 0.346) compared to

100 seeds without dye (9.8 ± 4.9 mg; 3.1 ± 0.07 m/

s). In the field trials, the 20 seeds were released at each

height individually during daylight by placing them on

a small platform on a mast, and allowing them to be

carried away by the wind. The different heights

represented the natural height of cones carried by

young trees soon after they reach maturity (1 m), the

height of cones at the top of the canopy of fully grown

mature trees (3 m), and a common height (2 m) at

which many cones were found on plants in the reserve

(Table 1). The released seeds were followed by eye

and the linear distance from the release point to where

the seed first landed was measured to the nearest cm.

We also measured wind speed (Model Kestrel 3000

Pocket Weather Meter, Nielsen-Kellerman, USA) at

the release platform, at the moment of take-off for

each seed. Seed release experiments across all sites

and burns were conducted over a 10 day period in each

season spending approximately 1–2 days per site

depending on wind conditions. Seeds were only

released within a horizontal wind speed range of

8–25 km/h. At lower wind speeds, seeds would not

take-off, and at higher wind speeds, seeds could not be

relocated. While this limited our ability to detect long-

distance seed dispersal that might be associated with

higher wind speeds, we could still address our main

question about dispersal differences among seasons.

Using a similar range of horizontal wind speeds in

each season allowed us to identify any seasonal effect

associated with seasonal differences in turbulence.

To understand the effect of standing vegetation on

the on-ground seed dispersal, we established groups of

10 seeds on the ground within 10 m of each of the six

previous release sites. The ground surface was natu-

rally bare in all sites. If leaf litter was present, it was

mostly accumulated around existing plants. The

location within sites was randomly chosen. No site

preparations were applied except for marking the

starting point with a small flag stuck into the ground.

The seeds were treated with fluorescent coloured dye

and placed on the bare ground next to the flag. After

four days, a UV light was used to search for the seeds

at night within a 5 m radius, and to record the distance

moved since release. This was repeated at each site in

spring, summer, and autumn. To quantify the potential

obstruction tomovement from standing vegetation, we

visually estimated the percentage of vegetation cover

up to 1 m height within a 5 m radius around each

release point using a tape measure to keep track of

distances and height.

Using analysis of variance, we tested the influence

of wind speed (m/s), height of seed release (three

heights), season (spring, summer, and autumn), and

their interactions on the distances that seeds were

predicted to travel. We log-transformed distance

which gave more even spread of residuals when

plotted against fitted values. We also fitted as fixed

effects, representing blocking factors: burn (a factor

identifying the two burns, 2009 and 2011) and site

nested in burn (where site is a factor identifying the six

sites). Due to the low number of levels in site and burn,

it was inappropriate to fit these as random effects in a

generalised linear mixed model (Lin 1997). Since

seeds dispersed further with higher wind speed, we

adjusted dispersal distances for wind speed at the time

of release (distance dispersed/wind speed) and

repeated the analysis with the additional difference

that wind and all interactions involving wind were

omitted.

We also used analysis of variance to examine the

relationship between distance seeds moved across the

ground with season, vegetation cover and their

interaction. Vegetation cover was measured at each

site, so we could not also fit site to the models as a fixed

effect as we did in the previous analysis. We fitted

burn as a fixed effect to account for multiple measures

Table 1 Distribution of seed cones and plant heights of Callitris verrucosa observed in the study area (N = 98 trees)

Percentile Lowest cone (m) Highest cone (m) Plant height (m)

25th 0.26 0.57 0.50

50th 0.35 0.88 0.87

75th 0.50 1.39 1.33

Max. 1.03 3.40 3.49

123

408 Plant Ecol (2019) 220:405–416



www.manaraa.com

within the two burns. Distance was log ? 1 trans-

formed, which improved model fit. Analyses were

completed in R (R Development Core Team 2011).

Modelling seed dispersal

Seed dispersal of C. verrucosawas modelled using the

programme PAPPUS (Tackenberg 2003), a trajectory

model that simulates seed dispersal by wind. The

modelling study complemented our empirical obser-

vations independently because PAPPUS uses wind

speeds measured over a longer period of time and

therefore incorporates more of the variation in wind

speeds that can occur within and among seasons. It

produces predictions of seed-dispersal distance based

on high-precision wind profiles, measured in the field

at a frequency of 10 Hz. PAPPUS has performed well

in predicting seed dispersal of other species over

longer distances (Tackenberg 2003).

Wind measurements were taken on a sand dune

crest close to one release site located in the 2011 burn.

Measurements continued for two weeks in each season

(spring, summer, autumn) including the time during

which seed release experiments were conducted. An

ultrasonic anemometer (Model WindMaster (Part

1590-PK-020), Gill Instruments Ltd, Lymington,

UK) measured horizontal wind speed, horizontal wind

direction, and vertical wind speed every 0.1 s, pro-

ducing a dynamic, three dimensional wind speed

vector. The measured values were used later to

simulate the course of the wind vector in PAPPUS.

The anemometer measured wind at a height of 2 m,

and PAPPUS then generated wind profiles for 1 m and

3 m by extrapolation. Generated values for all three

heights were used in the model and included in the

analysis.

PAPPUS derives predictions for seed-dispersal

distances taking into account wind profile, landscape

slope (hilly, sloping upwards/downwards, even), sur-

face roughness (influenced by vegetation height and

density), and terminal falling velocity of the seeds. We

used the pre-set landscape feature ‘‘rolling hills’’ in

PAPPUS that we considered was comparable to the

sand dunes found in the study area. To determine the

terminal falling velocity, we dropped 100 randomly

chosen seeds from 10 m height under calm conditions

inside a building. Falling duration was timed with an

electronic watch [compare Hammill et al. (1998)]. The

overall average seed falling rate (3.0 ± 0.6 m/s) was

then used as the falling velocity in PAPPUS (Tack-

enberg 2003).

PAPPUS simulated 1000 random seed releases and

related dispersal distances based on the wind profiles

generated over the two weeks anemometer recording

period. This was repeated for each season and at each

release height (1, 2 and 3 m).

Wind turbulences for each season

To identify the strengths of turbulences during each

season, we used the vertical wind speeds measured by

the anemometer. To simplify the large amount of data

generated by the anemometer, we chose to use a range

of vertical wind speeds within 60 s periods. Those

periods where evenly distributed over the day using

three hourly intervals starting from 0600 to 1800 h.

We used the difference between the lowest and the

highest values among the 1800 measurements of

vertical wind speed from the 5 9 60 s periods and

interpreted higher variability to indicate greater

turbulence.

Results

Wind conditions each season

The mean horizontal wind speed at the time when

seeds were released (Table 2) increased significantly

with height (p\ 0.001) but there was no significant

difference among seasons (p = 0.808; Kruskal–Wallis

1-way ANOVA). However, the means of the contin-

uous anemometer readings of the horizontal wind

speed at 2 m height over the 2-week period were

significantly different among seasons (p = 0.017;

Kruskal–Wallis 1-way ANOVA) with the highest

wind speeds in summer (Table 2). A similar, and

marginally significant trend was observed for

anemometer readings of mean vertical wind speeds

(spring 0.22 m/s ± 0.01; summer 0.30 m/s ± 0.03,

autumn 0.21 m/s ± 0.03) (p = 0.08; Kruskal–Wallis

1-way ANOVA) (Fig. 1a). Turbulence increased as

the day progressed and was consistently as high or

higher, at each time of day, in summer than in the other

two seasons (Fig. 1b). An overall frequency distribu-

tion of vertical wind speeds showed that extreme

values were more frequent in summer although the

mean values were not significantly different among
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seasons (p = 0.78; Kruskal–Wallis 1-way ANOVA)

(Fig. 1c).

Empirical observations of seed dispersal

Most released seeds landed close to the release point.

In spring and autumn, 90% of the seeds were wind

dispersed less than 3 m, and in summer less than 4 m.

The maximum observed dispersal distances were from

seeds released at 3 m height (7.5 m in spring; 10.6 m

in summer; 6.6 m in autumn) (Fig. 2).

The ANOVA showed that dispersal distance was

significantly affected by site, season, release height

and wind speed, and the two-way interaction of season

and height (Table 3). Dispersal distance increased with

wind speed at each release height, the increase was

consistently greater in summer than in the other two

seasons, and the increase with wind speed was lowest

in spring for seeds released at 1 m, while it was lowest

in autumn for seeds released at 3 m (Fig. 3).

When we adjusted dispersal distances for wind

speed at the time of release (distance dispersed/wind

speed), there was still a significant interaction effect

between season and height on the adjusted dispersal

distance (Table 3). Adjusted dispersal distance

increased with release height in each season except

in summer which had equally long dispersal (and the

longest mean values in the data set) at both 2 m and

3 m release heights (Fig. 4).

The PAPPUS model also showed maximum dis-

persal in summer, but the estimates were always

higher than the empirical observations (Table 4).

On-ground dispersal

Out of the 180 seeds released we considered dispersal

distances of the 161 (89%) that could be relocated.

Most seeds (90%) were found within 0.5 m from their

release point, and the furthest dispersal was 1.4 m

(Fig. 5a). GLM analyses, identified % vegetation

cover as a significant factor (Table 5) with seeds

Table 2 Mean horizontal wind speed (m/s) (SE) at the moment

of each seed release, at each release height and season

(N = 360/season); and mean horizontal wind speed (m/s) (SE)

measured at 2 m height (2m PAPPUS) with the anemometer

over a timeframe of 7 days

Season 1 m 2 m 2 m PAPPUS 3 m

Spring 1.7 ± 0.76 2.1 ± 0.89 2.1 ± 0.15 2.8 ± 0.94

Summer 2.0 ± 1.03 2.1 ± 1.03 3.0 ± 0.36 3.4 ± 1.37

Autumn 1.9 ± 0.94 2.4 ± 0.95 1.6 ± 0.23 2.9 ± 1.21

Fig. 1 Wind profiles for the different seasons a mean vertical

and horizontal wind speeds for spring summer and autumn. The

dark grey bars present horizontal wind speed, and light grey bars

the vertical wind speed. bRange of vertical wind speeds over the
period of a day based on wind data measured over three days.

Error bars display the standard error. (Spring = dotted line;

Summer = dashed line; Autumn = solid line) c Frequencies of
vertical wind speeds measured over the period of one week. On

the x-axis, the positive values represent upwards movement, and

negative values represent downwards movement of vertical

winds (Spring = light grey bars; Summer = medium grey bars;

Autumn = dark grey bars)
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travelling similar short distances in all three seasons

when cover was high. A statistically non-significant

trend indicated seeds may travel further in summer

than in the other two seasons when cover was low

(Fig. 5b).

Fig. 2 Distribution of accumulated seed-dispersal distances for seeds released from 1 m, 2 m and 3 m heights (total of 360 seeds) in

spring (a), summer (b) and autumn (c)

Table 3 Results of

Analysis of variance for

influence on (a) absolute

seed-dispersal distance of

season, release height and

wind speed; and (b) seed-

dispersal distance relative to

wind speed of season, and

release height

Factor a b

F-value P-value F-value P-value

Burn 0.49 0.48 0.60 0.44

Burn/site 6.93 \ 0.001 3.97 0.003

Season 73.03 \ 0.001 41.04 \ 0.001

Height 751.11 \ 0.001 180.02 \ 0.001

Wind speed 291.33 \ 0.001

Season: height 6.12 \ 0.001 3.98 0.019

Height: wind 0.78 1

Season: wind 2.99 0.05

Season: height: wind 0.481 0.62

Fig. 3 Dispersal distance of seeds released over a range of wind speeds from heights of a 1 m; b 2 m; and c 3 m. Grey area = 95%

confidence limits. (Spring = dashed line; Summer = dotted line; Autumn = solid line)
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Discussion

Wind-borne dispersal distance of seeds was mainly

influenced by an interaction between season, height

and wind speed. Seeds released from greater heights or

in stronger winds tended to disperse further in all

seasons but there was an additional significant impact

of season. The dispersal distances for the same wind

speeds and same release heights were higher in

summer. Since seed release of C. verrucosa primarily

occurs after fire, this finding suggests seeds will

disperse further after fires in summer than after fires in

other seasons.

Longer dispersal in summer is likely to be driven by

wind turbulences caused by hot soil surfaces. Earlier

studies that have shown that seeds disperse further

during stronger winds included autocorrelated turbu-

lent fluctuations within the vertical wind velocity

(Soons et al. 2004; Tackenberg et al. 2003a, b; Bullock

and Clarke 2000; Nathan et al. 2001). Even in low

wind velocity, seeds dispersed further in turbulent air

(Soons et al. 2004; Tackenberg 2003). Tackenberg

(2003) reported that for variations in seed-dispersal

distance, horizontal wind speeds were less important

than thermal updrafts and turbulent air conditions. In

summer, solar heating of the ground creates instability

in the atmosphere and causes thermal updrafts

favouring seed uplift and long-distance dispersal

(Sullivan et al. 2012; Kuparinen et al. 2009; Nathan

2005; Wright et al. 2008). In our measured wind

profiles, the range of vertical wind speeds over the

duration of a day was highest during summer. The heat

absorption by the blackened ground surface associated

with the post-fire environment exacerbates these

effects, increasing the occurrence of ‘‘willie-willies’’

or ‘‘dust devils’’, local convective circulations, and

similar turbulences (Oke et al. 2007). In addition,

during dry thunderstorms in summer, gusty and erratic

winds potentially enhance seed dispersal (Sullivan

et al. 2012; Heidorn 2005). Our data are consistent

with these generalisations, even though the time since

fire at our experimental sites may have dampened solar

heating. Nevertheless, wind dynamics found during

summer are more favourable for promoting seed

dispersal compared to spring and autumn.

Our study also suggested that the secondary

dispersal of seeds on the ground will be reduced after

non-summer burns if reduced fire intensities have led

to higher densities of vegetation cover. We found that,

in each season, seeds deposited in sites with higher

vegetation density had lower secondary dispersal,

probably because the vegetation acted as a wind break

Fig. 4 Mean adjusted dispersal distance for wind speed

[distance (m)/ wind speed (m/s)] in each season and at each

release height. Error bars display the standard error. (Spring =

light grey, Summer = medium grey, Autumn = dark grey)

Table 4 Proportion of

seeds in the dispersal

distance spectra for daylight

visual tracking and for the

trajectory Model PAPPUS

accumulated from all

distributions for 1 m, 2 m

and 3 m heights

Method Season 0–5 m [ 5–10 m [ 10–15 m [ 15–20 m [ 20–25 m

Daylight visual tracking

Spring 99.7 0.3 0 0 0

Summer 97.2 2.5 0.3 0 0

Autumn 98.6 1.4 0 0 0

Trajectory model PAPPUS

Spring 79.1 20.3 0.6 0 0

Summer 58.7 29.9 11.4 0.8 8.57E-03

Autumn 87.2 10.8 1.9 0.1 0
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or as an obstruction to seed movement. Height and

density of the surrounding vegetation greatly influ-

ences wind velocity on the ground and hence seed-

dispersal potential and distances (Schurr et al. 2005;

Soons et al. 2004). Prescribed burns in autumn or

spring are characteristically low severity fires (Brad-

stock and Auld 1995) and are likely to leave more

vegetation and more obstructions to seed movement

than summer wildfires (Gavazzi and McNulty 2014;

Prosser andWilliams 1998). Secondary wind dispersal

can markedly alter the seed-dispersal shadow, and

may have an important influence on the long-distance

movement of seeds and spatial patterning of plant

populations (Schurr et al. 2005). Thus, both the

primary wind-borne dispersal following seed release

from the tree, and the secondary dispersal along the

ground can be synergistically affected by an anthro-

pogenic shift in fire season from summer to either

autumn or spring, resulting in an overall reduction in

the seed-dispersal capability of C. verrucosa and other

species with similar dispersal mechanisms.

Although we primarily examined the proximal

portion of the dispersal kernel, we expect the seasonal

relationship to hold true under stronger turbulent wind

conditions, and hence the tail of the dispersal kernel.

The PAPPUS modelling method addressed some of

the limitations in estimating initial wind-borne dis-

persal, but again extreme wind conditions or other

meteorological events that could be particularly

important for long-distance seed dispersal may have

been missed during the sampling period of two weeks.

Nevertheless, we suggest that the relationships

revealed from the inner portion of the kernel, and

specifically the longer-distance dispersals in summer,

are likely to be maintained across the entire kernel

because convection and updraft are likely to be

promoted by surface heating, which is greater in

summer than at other times of year (Sullivan et al.

2012; Kuparinen et al. 2009). Therefore, our results

suggest that fire season is important in generating

long-distance dispersal of fire-released seeds, and

hence for promoting gene flow (Cain et al. 2000;

Loveless and Hamrick 1984; Levin and Kerster 1974),

recolonisation (He et al. 2004; Cain et al. 2000), rescue

effects (Bohrer et al. 2005) and colonisation of new

sites (Trakhtenbrot et al. 2005; Nathan and Muller-

Landau 2000; Clark et al. 1998) in populations of C.

verrucosa and other serotinous trees.

The general findings of this study are expected to be

applicable to other serotinous obligate seeders in fire-

prone ecosystems that rely on seed dispersal by wind

for their population persistence and re-establishment.

More wind-dispersed serotinous obligate seeding tree

species may be found within the families of

Fig. 5 a Distribution of on-

ground seed-dispersal

distances for Callitris

verrucosa combining data

from all three seasons

(n = 161). b Relationship

between on-ground

dispersal distance and

percent vegetation cover up

to 1 m height for each

season. Grey area = 95%

confidence limits.

(Spring = dashed line;

Summer = dotted line;

Autumn = solid line)

Table 5 Results of Analysis of variance for influence on seed-

dispersal distances on the ground of percent vegetation cover

at\ 1 m height and season

Factor F value P-value

Burn 3.719 0.1

Season 0.431 1

Vegetation cover (%) 8.839 0.01

Season: vegetation cover (%) 1.725 1
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Proteaceae, Myrtaceae, Pinaceae and Cupressaceae

which grow in the fire-prone, nutrient-poor and

seasonally dry sclerophyll vegetation of Australia,

South Africa, North America and Mediterranean

Europe (Lamont et al. 1993). The potential reduction

in seed-dispersal distances of these plant species if fire

is constrained to cooler seasons could cause changes in

population and community structure (Foster and

Tilman 2003). Changes in structure can affect future

fire patterns (Wilson et al. 1992) and animal species

that depend on those species for habitat.

We conclude that the application of prescribed

burning as a fire management tool, when carried out

during cooler seasons compared to natural wildfires,

reduces dispersal distances of wind-borne seeds. To

improve our understanding of this topic, further work

is needed to explore and quantify differences in fire

seasonal effects between species and over the tail of

the dispersal kernel. Effects of fire season on seed

dispersal must be viewed in the context of other plant

population processes (such as germination, survival

and reproduction) that may be influenced by fire

season, as well as its interactions with fire severity.

These in combination may profoundly affect gene

flow and population persistence.
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